Penjelasan dengan langkah-langkah:
nomor 1
[tex] \sf = {(2m)}^{3} \\ \sf = {2}^{3} \: {m}^{3} \\ \sf = 8 {m}^{3} \: (c)[/tex]
-------------------
Nomor 2
[tex] \sf = {( - \frac{3}{x} )}^{ - 2} \\ \sf = {( - \frac{x}{3}) }^{2} \\ \sf = {( \frac{x}{3}) }^{2} [/tex]
[tex] \sf = {( - \frac{3}{x} )}^{ - 2} \\ \sf = {( - \frac{x}{3}) }^{2} \\ \sf = {( \frac{x}{3}) }^{2} \\ \sf = \frac{ {x}^{2} }{ {3}^{2} } \\ \sf = \frac{ {x}^{2} }{9} \: (a)[/tex]
-------------------
Nomor 3
[tex] \sf = \frac{9m}{2n} \times \frac{ {n}^{3} }{3m} \\ \sf = \frac{(9 \div 3) \: {m}^{(1 - 1) } \: {n}^{3 - 1} }{2} \\ \sf = \frac{3}{2} {n}^{2} \: (b)[/tex]
-------------------
Nomor 4
[tex] \sf = {5}^{2} \div {5}^{ - 2} \\ \sf = {5}^{2 - ( - 2)} \\ \sf = {5}^{2 + 2} = {5}^{4} \\ \sf = 625 \: (d)[/tex]
--------------------
Nomor 5
[tex] \sf = { ({3}^{ - m}) }^{ - 2n} \\ \sf = {3}^{( - m \times ( - 2n))} \\ \sf = {3}^{2mn} \\ \sf = {9}^{mn} \: (c)[/tex]
---------------------
Nomor 6
[tex] \sf = { {1}^{3} }^{10} \\ \sf = {1}^{3 \times 10} \\ \sf = {1}^{30} \\ \sf = 1 \: (d)[/tex]
--------------------
Nomor 7
[tex] \sf = {( {a}^{3} \: {b}^{ - 2} c)}^{2} \\ \sf = {a}^{(3 \times 2)} \: {b}^{( - 2 \times 2)} \: {c}^{2} \\ \sf = {a}^{6} \: {b}^{ - 4} {c}^{2} \\ \sf = \frac{ {a}^{6} \: {c}^{2} }{ {b}^{4} } \: (a)[/tex]
--------------------
Nomor 8
[tex] \sf = {( \frac{ {x}^{2} }{ {y}^{ - 3} } )}^{3} \\ \sf = \frac{ {x}^{(2 \times 3)} }{ {y}^{( - 3 \times 3)} } \\ \sf = \frac{ {x}^{6} }{ {y}^{ - 9} } \\ \sf = {x}^{6} \: {y}^{9} \: (c)[/tex]
[answer.2.content]